Ion Coordination and Chelation in a Glycolated Polymer Semiconductor: Molecular Dynamics and X-Ray Fluorescence Study

08 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Organic electrochemical transistors (OECTs) are based on the doping of a semiconducting polymer by an electrolyte. Due to their ability to conjugate volumetric ion penetration with high hole mobility and charge density, polythiophenes bearing glycolated side chains have rapidly surged as the highest performing materials for OECTs; amongst them, p(g2T-TT) is amongst those with the highest figure of merit. While recent studies have shown how different doping anions tend to affect the polymer microstructure, only a handful of electrolytes have been tested in mixed conduction devices. Our work provides an atomistic picture of the p(g2T-TT) -electrolyte interface in the ‘off’ state of an OECT, expected to be dominated by cation-polymer interactions. Using a combination of molecular dynamics simulations and X-ray fluorescence, we show how different anions effectively tune the coordination and chelation of cations by glycolated polymers. At the same time, softer and hydrophobic anions such as TFSI and ClO4 are found to preferentially interact with the p(g2T-TT) phase, further enhancing polymer-cation coordination. Besides opening the way for a full study of electrolyte doping mechanisms in operating devices, our results suggest that tailoring the electrolyte for different applications and materials might be a viable strategy to tune the performance of mixed conducting devices.

Keywords

Molecular Dynamics Simulation Study
semiconducting polymers
interface organization
glycolated polymers
glycolated side chains
electrolytes
bioelectronics materials
X-ray fluorescence

Supplementary materials

Title
Description
Actions
Title
ionscape text
Description
Actions
Title
SI g2TTT Matta
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.