Insights into the Formation Mechanism of CdSe Nanoplatelets Using in situ X-ray Scattering

23 July 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Two dimensional ultra thin CdSe nanoplatelets have attracted a large interest due to their optical properties but their formation mechanism is not well understood. Several different mechanisms have been proposed: confined growth in a surfactant mesophase acting as a template, anisotropic ripening of small seeds into 2D nanoplatelets or continuous anisotropic growth of a limited number of nuclei. However, quantitative in situ data that could validate or disprove these formation scenarios are lacking. We use synchrotron-based small-angle and wide-angle X-ray scattering to probe the formation mechanism of CdSe nanoplatelets synthesized using a heating-up method. We prove the absence of a molecular mesophase in the reactive medium at the onset of nanoplatelet formation ruling out a templating effect. We also show that our data are inconsistent with the anisotropic ripening of small seeds whereas the evolution of the SAXS patterns during the reaction is consistent with the continuous lateral growth of nanoplatelets fed by reactive monomers. Finally, we show that when the final temperature of the synthesis is lowered, nanoplatelets with larger lateral dimensions form. We reveal that they bend in solution during their growth to yield nanoscrolls.

Keywords

nanoplatelets
semi-conductor
quantum dots
quantum well
small angle scattering
synchrotron
SAXS

Supplementary materials

Title
Description
Actions
Title
suppmat V2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.