In Vitro Blood-Brain-Barrier Permeability and Cytotoxicity of Atorvastatin-Loaded Nanoformulation Against Glioblastoma in 2D and 3D Models

Inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase of the family of statins have been suggested as therapeutic options in various tumors. Atorvastatin is a statin with potential to cross the blood-brain-barrier, however, the concentrations necessary for a cytotoxic effect against cancer cells exceeds the concentration achievable via oral administration, which made the development of a novel atorvastatin formulation necessary. We characterized the drug loading and basic physicochemical characteristics of micellar atorvastatin formulations and tested their cytotoxicity against a panel of different glioblastoma cell lines. In addition, activity against tumor spheroids formed from mouse glioma and mouse cancer stem cells, respectively, was evaluated. Our results show good activity of atorvastatin against all tested cell lines. Interestingly, in the 3D models, growth inhibition was more pronounced for the micellar formulation compared to free atorvastatin. Finally, atorvastatin penetration across a blood-brain-barrier model obtained from human induced-pluripotent stem cells was evaluated. Our results suggest that the presented micelles may enable much higher serum concentrations than possible by oral administration, however, if transport across the blood-brain-barrier is sufficient to reach therapeutic atorvastatin concentration for the treatment of glioblastoma via intravenous administration remains unclear.