Impact of Dehydroamino Acids on the Structure and Stability of Incipient 3₁₀ Helical Peptides

16 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

A comparative study of the impact of small, medium-sized, and bulky Δ,Δ-dehydroamino acids (ΔAAs) on the structure and stability of Balaram’s incipient 3₁₀ -helical peptide (1) is reported. Replacement of the N-terminal Aib residue of 1 with a ΔAA afforded peptides 2a–c that maintained the 310-helical shape of 1 in solution. In contrast, installation of a ΔAA in place of Aib-3 yielded peptides 3a–c that preferred a Δ-sheet-like conformation. The impact of the ΔAA on peptide structure was independent of size, with small (ΔAla), medium-sized (Z-ΔAbu), and bulky (ΔVal) ΔAAs exerting similar effects. The proteolytic stabilities of 1 and its analogs were determined by incubation with Pronase. Z-ΔAbu and ΔVal increased the resistance of peptides to proteolysis when incorporated at the 3-position and had negligible impact on stability when placed at the 1-position, whereas ΔAla-containing peptides degraded rapidly regardless of position. Exposure of peptides 2a–c and 3a–c to the reactive thiol cysteamine revealed that ΔAla-containing peptides underwent conjugate addition at room temperature, while Z-ΔAbu- and ΔVal-containing peptides were inert even at elevated temperatures. These results suggest that both bulky and the more synthetically accessible medium-sized ΔAAs should be valuable tools for bestowing rigidity and proteolytic stability on bioactive peptides.

Keywords

Dehydroamino acids
Peptide chemistry
Proteolytic stability

Supplementary materials

Title
Description
Actions
Title
JOC 310 helices SI updated
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.