Identifying Structure-Property Relationships through SMILES Syntax Analysis With Self-Attention Mechanism

14 November 2018, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Recognizing substructures and their relations embedded in a molecular structure representation is a key process for structure-activity or structure-property relationship (SAR/SPR) studies. A molecular structure can be either explicitly represented as a connection table (CT) or linear notation, such as SMILES, which is a language describing the connectivity of atoms in the molecular structure. Conventional SAR/SPR approaches rely on partitioning the CT into a set of predefined substructures as structural descriptors. In this work, we propose a new method to identifying SAR/SPR through linear notation (for example, SMILES) syntax analysis with self-attention mechanism, an interpretable deep learning architecture. The method has been evaluated by predicting chemical property, toxicology, and bioactivity from experimental data sets. Our results demonstrate that the method yields superior performance comparing with state-of-the-art methods. Moreover, the method can produce chemically interpretable results, which can be used for a chemist to design, and synthesize the activity/property improved compounds.

Keywords

virtual screening
deep learning
attention mechanism
molecular descriptor
structure-property relationship
drug discovery

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.