Homogeneous Gelation Leads to Nanowire Forests in the Transition Between Electrospray and Electrospinning

10 March 2020, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The morphology of coatings created by electrostatic deposition can be generally divided into three categories: wire mats (electrospinning), particles (electrostatic spray, electrospray deposition(ESD)), and films (all low-viscosity applications). There should exist nanowire forests as a mixture of wire and particulate deposition. Such a morphology has yet to be observed experimentally, which we propose is the result of spatially-varying viscosity in sprayed droplets. We utilized electrostatic dissipative particle dynamics (DPD) and ESD to explore the spray of methylcellulose (MC) in water:ethanol mixtures. MC possesses a lower critical solution temperature (LCST) in water and water:ethanol blends. DPD simulations reveal that the barrier to forming nanowire forests is the directional nature of evaporation, but they should form were evaporation homogeneous. In ESD conducted above the LCST, MC and water phase separate concurrently with the rapid evaporation of ethanol, forming a homogeneous gel phase. This gel can undergo the elongation of electrospinning on a drop-by-drop basis to create forests of individual nanowires. Our study indicates that this homogenous evolution of viscosity is necessary for nanowire forest formation and that the specific viscosity (along with droplet size) further controls the morphology of the forests.

Keywords

electrospray deposition method
Self-assembly
biopolymer
Rheological Consequences

Supplementary materials

Title
Description
Actions
Title
MC SLED 03082020 SI
Description
Actions
Title
Video S1
Description
Actions
Title
Video S2
Description
Actions
Title
Video S3
Description
Actions
Title
Video S4
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.