Helical Graphene Nanostructures Embedded with an Azulene Cluster

An azulene cluster is a structural defect of graphenes, and it alters the electronic, magnetic, and structural properties of graphenes and graphene nanoribbons. However, detailed experimental investigations of graphenes or graphene nanostructures embedded with an azulene cluster are limited because they are difficult to synthesise. Herein, azulene-embedded graphene nanostructures (AGNs) were synthesised by following a newly developed synthetic protocol. The nanostructures comprising pentagons, hexagons, and heptagons has three characteristic edges, viz., zigzag-, armchair-, and cove-type edges. Experimental and theoretical investigations of the properties of AGN revealed that the cove edge has stable helical chirality with a racemisation barrier of 29.2 kcal/mol, in contrast to normal cove-type edges that undergo rapid racemisation. The in-solution self-association behaviour and the structural, electronic, and electrochemical properties of AGN are also described in detail.