Halide Ion Micro-Hydration: Structure, Energetics, and Spectroscopy of Small Halide–Water Clusters

28 January 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Replica exchange molecular dynamics simulations and vibrational spectroscopy calculations are performed using halide-water many-body potential energy functions to provide a bottom-up analysis of the structures, energetics, and hydrogen-bonding arrangements in X−(H2O)n=3−6 clusters, with X = F, Cl, Br, and I. Independently of the cluster size, it is found that all four halides prefer surface-type structures in which they occupy one of the vertices in the underlying three-dimensional hydrogen-bond networks. For fluoride-water clusters, this is in contrast with previous reports suggesting that fluoride prefers interior-type arrangements, where the ion is fully hydrated. These differences can be ascribed to the variability in how various molecular models are capable to reproduce the subtle interplay between halide-water and water-water interactions. Our results thus emphasize the importance of a correct representation of individual many-body contributions to the molecular interactions for a quantitative description of halide ion hydration.

Keywords

ionic clusters
water
many-body effects
isomeric equilibria
infrared spectroscopy

Supplementary materials

Title
Description
Actions
Title
toc
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.