H/D Isotope Effects on Redox-Switching of DNA Self-Assembled Monolayers Observed by EQCM and Cyclic Voltammetry

An electrochemical quartz crystal microbalance (EQCM) was employed to study the interactions of hexammine ruthenium(III) (RuHex) and hexammine cobalt(III) (CoHex) with a mixed self-assembled monolayer of single-stranded DNA and 6-mercapto-1-hexanol (ssDNA/MCH SAM) immobilized on gold electrodes. When the buffer medium was switched to deuterium oxide (D<sub>2</sub>O) from normal water (H<sub>2</sub>O), we observed a pronounced H/D kinetic isotope effect where a consistent shift of up to 400 mV was seen for the reduction peak potential of CoHex but not with RuHex. This was attributed to a 2400-fold change of the apparent reaction rate constant. Though there was a dramatic increase in the EQCM frequency response at a millisecond time scale in the presence of both redox indicators, compared to the signal observed in a low ionic strength buffer (10 mM tris(hydroxymethyl)aminomethane (Tris)/H<sub>2</sub>SO<sub>4 </sub>at pH 7.5), a 10 Hz decrease in the frequency shift was observed upon switching from H<sub>2</sub>O to D<sub>2</sub>O-based buffer medium. The hydrogen bond network within the ssDNA layer seems to amplify the H/D isotope effect with CoHex. Amplified isotope effects may play a role in living systems. The mechanisms of recently reported H/D isotope effects in medicinal and biochemistry are still widely unclear. Voltammetric and EQCM studies of H/D isotope effects can provide a platform to investigate amplified isotope effects not only with DNA layers, but probably also with proteins and small organic molecules and may be useful for studies of cell proliferation, as well as drug testing.