Gasification Pathways and Reaction Mechanisms of Primary Alcohols in Supercritical Water

31 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Supercritical water gasification is a promising waste-to-energy technology with the ability to convert aqueous and/or heterogeneous organic feedstocks to high-value gaseous products, e.g., green hydrogen. Reaction behavior of complex molecules in supercritical water can be inferred through knowledge of the reaction pathways of model compounds in supercritical water. In this study methanol, ethanol, and isopropyl alcohol are gasified in a continuous supercritical water reactor at temperatures between 500 and 560 °C, and for residence times between 3 and 8 s. In situ Raman spectroscopy is used to rapidly identify and quantify reaction products. The experiments confirm the dominance of chain-branching, free radical reaction mechanisms that are responsible for decomposing primary alcohols in the supercritical water environment. Reaction pathways and mechanisms for three alcohols are proposed, conversion metrics are presented, and results are compared with known reaction mechanisms for methanol and ethanol oxidation.


Keywords

Supercritical Water
Gasification
Ethanol
Methanol
Analytical Chemistry
Reaction Mechanisms
Free Radicals
Char
Isopropanol

Supplementary materials

Title
Description
Actions
Title
Supplementary Information for - Gasification Pathways and Reaction Mechanisms of Primary Alcohols
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.