Fluoride Migration Catalysis Enables Simple, Stereoselective, and Iterative Glycosylation

28 August 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Challenges in the assembly of glycosidic bonds pose a bottleneck in enabling the remarkable promise of advances in the glycosciences. We report a strategy that applies unique features of electrophilic boron catalysts in addressing current limitations of methods in glycoside synthesis. The strategy utilizes glycosyl fluoride donors and silyl ether acceptors while tolerating the Lewis basic environment found in carbohydrates. The method allows a simple setup at room temperature while utilizing catalyst loadings as low as 0.5 mol %, and air- and moisture stable forms of the catalyst are found to be effective. These characteristics enable a wide array of glycosylation patterns to be accessed, including all four C1-C2 stereorelationships, and the method allows one-pot, iterative glycosylations to generate oligosaccharides directly from monosaccharide building blocks.

Keywords

Glycosylation
boron
carbohydrate
glycobiology
fluorine
stereoselective

Supplementary materials

Title
Description
Actions
Title
Montgomery glycosyl fluoride SI
Description
Actions
Title
Montgomery summary graphic
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.