Exploring Protocols to Build Reservoirs to Accelerate Replica Exchange MD Simulations

20 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Replica Exchange Molecular Dynamics (REMD) is a widely used enhanced sampling method for accelerating biomolecular simulations. During the past two decades, several variants of REMD have been developed to further improve the rate of conformational sampling of REMD. One such variant, Reservoir REMD (RREMD), was shown to improve the rate of conformational sampling by around 5-20x. Despite the significant increase in sampling speed, RREMD methods have not been widely used due to the difficulties in building the reservoir and also due to the code not being available on the GPUs.

In this work, we ported the AMBER RREMD code onto GPUs making it 20x faster than the CPU code. Then, we explored protocols for building Boltzmann-weighted reservoirs as well as non-Boltzmann reservoirs, and tested how each choice affects the accuracy of the resulting RREMD simulations. We show that, using the recommended protocols outlined here, RREMD simulations can accurately reproduce Boltzmann-weighted ensembles obtained by much more expensive conventional REMD simulations, with at least 15x faster convergence rates even for larger proteins (>50 amino acids) compared to conventional REMD.

Keywords

Conformational sampling
Converged Ensembles
Replica Exchange Molecular Dynamics Simulation
Reservoir REMD
Monte Carlo Simulation Method
Protein Folding
molecular dynamics

Supplementary materials

Title
Description
Actions
Title
rremd.SI.submitted
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.