Electrochemical Properties and Crystal Structure of Li+/H+ Cation-Exchanged LiNiO2

08 January 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

LiNiO2 has high energy density but easily reacts with moisture in the atmosphere and deteriorates. We performed qualitative and quantitative evaluations of the degraded phase of LiNiO2 and the influence of the structural change on the electrochemical properties of the phase. Li1-xHxNiO2 phase with cation exchange between Li+ and H+ was confirmed by thermogravimetric analysis and Karl Fischer titration measurement. As the H concentration in LiNiO2 increased, the rate capability deteriorated, especially in the low-temperature range and under low state of charge. Experimental and density functional theory (DFT) calculation results suggested that this outcome was due to increased activation energy of Li+ diffusion owing to cation exchange. Rietveld analysis of X-ray diffraction and DFT calculation confirmed that the c lattice parameter and Li-O layer reduced because of the Li+/H+ cation exchange. These results indicate that LiNiO2 modified in the atmosphere has a narrowed Li-O layer, which is the Li diffusion path, and the rate characteristics are degraded.

Keywords

lithium nickel oxide
Li-ion battery cathode performance

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.