Double-Emulsion Copolyester Microcapsules for Sustained Intraperitoneal Release of Carboplatin

07 November 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite on-going medical advances, ovarian cancer survival rates have stagnated. In order to improve IP delivery of platinum-based antineoplastics, we aimed to develop a sustained drug delivery system for carboplatin (CPt). Toward this aim, we pursued a double emulsion process for obtaining CPt-loaded microcapsules composed of poly(ethylene terephthalate-ethylene dilinoleate) (PET‑DLA) copolymer. We were able to obtain PET-DLA microspheres in the targeted size range of 10–25 µm (median: 18.5 µm), to reduce intraperitoneal clearance by phagocytosis and lymphoid transit. Empty microspheres showed the lack of toxicity in vitro. The double emulsion process yielded 2.5% w/w CPt loading and obtained microcapsules exhibited sustained (>20 day) zero-order release. The encapsulated CPt was confirmed to be bioavailable, as the microcapsules demonstrated efficacy against human ovarian adenocarcinoma (SK-OV-3) cells in vitro. Following intraperitoneal injection in mice, we did not observe adhesions, only mild clinically-insignificant, local inflammatory response. Tissue platinum levels, monitored over 14 days using atomic absorption spectroscopy, revealed low burst and reduced systemic uptake (plasma, kidney), as compared to neat carboplatin injection. Overall, the results demonstrate the potential of the developed microencapsulation system for long-term intraperitoneal sustained release of carboplatin for

the treatment of ovarian cancer.

Keywords

Controlled Drug Release Delivery systems
microencapsulation
Carboplatin
intraperitoneal delivery
ovarian cancer

Supplementary materials

Title
Description
Actions
Title
graphical abstract 2
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.