These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
2 files

Density Functionals with Quantum Chemical Accuracy: From Machine Learning to Molecular Dynamics

submitted on 03.05.2019 and posted on 06.05.2019 by Mihail Bogojeski, Leslie Vogt-Maranto, Mark E. Tuckerman, Klaus-Robert Mueller, Kieron Burke

Kohn-Sham density functional theory (DFT) is a standard tool in most branches of chemistry, but accuracies for many molecules are limited to 2-3 kcal/mol with presently-available functionals. Ab initio methods, such as coupled-cluster, routinely produce much higher accuracy, but computational costs limit their application to small molecules. We create density functionals from coupled-cluster energies, based only on DFT densities, via machine learning. These functionals attain quantum chemical accuracy (errors below 1 kcal/mol). Moreover, density-based ∆-learning (learning only the correction to a standard DFT calculation, ∆-DFT) significantly reduces the amount of training data required. We demonstrate these concepts for a single water molecule, and then illustrate how to include molecular symmetries with ethanol. Finally, we highlight the robustness of ∆-DFT by correcting DFT simulations of resorcinol on the fly to obtain molecular dynamics (MD) trajectories with coupled-cluster accuracy. Thus ∆-DFT opens the door to running gas-phase MD simulations with quantum chemical accuracy, even for strained geometries and conformer changes where standard DFT is quantitatively incorrect.


Email Address of Submitting Author


New York University


United States of America

ORCID For Submitting Author


Declaration of Conflict of Interest

no conflict of interest