De Novo Design of a Nanopore for DNA Detection Incorporating a β-hairpin Peptide

13 May 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The amino acid sequence of a protein encodes information on its three-dimensional structure and specific functionality. De novo protein design has emerged as a method to manipulate the primary structure for the development of artificial proteins and peptides with desired functionality. This paper describes the de novo design of a pore-forming peptide that has a β-hairpin structure and assembles to form a stable nanopore in a bilayer lipid membrane. This large synthetic nanopore is an entirely artificial device with practical applications. This peptide, named SV28, forms nanopore structures ranging from 1.6 to 6.2 nm in diameter assembled from 7 to 18 monomers. The nanopore formed with a diameter of 5 nm is able to detect long double-stranded DNA (dsDNA) with 1 kbp length, and measurement of current signals allowed us to investigate the translocation behavior of dsDNA at the single molecule level. Such de novo design of peptide sequences has the potential to create assembled structure in lipid membrane such as novel nanopores, which would also be applicable in molecular transporter between inside and outside of lipid membrane.

Keywords

Nanopore
De novo design
Transmembrane peptide
lipid bilayer

Supplementary materials

Title
Description
Actions
Title
20 SI Shimizu SV28 06
Description
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.