Computational Modeling Reveals the Mechanism of Fluorescent State Recovery in the Reversibly Photoswitchable Protein Dreiklang

26 July 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The unique properties of the photoswitchable protein Dreiklang are attributed to a reversible hydration/dehydration reaction at the imidazolinone ring of the chromophore. Recovery of the fluorescent state, which is associated with a chemical reaction of chromophore dehydration, is an important part of the photocycle of this protein. Here we characterize the fluorescent (ON) and non-fluorescent (OFF) states of Dreiklang and simulate the thermal recovery reaction OFF → ON using computational approaches. By using molecular modeling methods including the quantum mechanics/molecular mechanics (QM/MM) technique, we characterize the structures and spectra of the ON- and OFF-states. The results are consistent with relevant experimental data. The computed reaction profile explains the observed recovery reaction and clarifies the mechanism of chemical transformations in the chromophore-containing pocket in Dreiklang.

Keywords

fluorescent proteins
Molecular modeling studies
QM/MM
proton transfer

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.