ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
ChemRxiv of Little and Uziel 11-16-2019.pdf (661.05 kB)
0/0

Cancer Cells Possess Different Isotopic Enrichment

preprint
submitted on 16.10.2019 and posted on 21.10.2019 by Reginald Little, Orit Uziel
Although the dynamics of telomeres during the life expectancy of normal cells have been extensively studied, there are still some unresolved issues regarding this research field. For example, the conditions required for telomere shortening leading to malignant transformation are not fully understood. In this work, we mass analyzed DNA of normal and cancer cells for comparing telomere isotopic compositions of white blood cells and cancer cells. We have found that the 1327 Da and 1672 Da characteristic telomere mass to charge cause differential mass distributions of about 1 Da for determining isotopic variations among normal cells relative to cancer cells. These isotopic differences are consistent with a prior theory that replacing primordial isotopes of 1H, 12C, 14N, 16O, 24Mg, 31P and/or 32S by nonprimordial, uncommon isotopes of 2D, 13C, 15N, 17O, 25Mg and/or 33S leads to altered enzymatic dynamics for modulating DNA and telomere codons towards transforming normal cells to cancer cells. The prior theory and current data are consistent also with a recently observed non-uniform methylation in DNA of cancer cells relative to more uniform methylation in DNA of normal cells.

History

Email Address of Submitting Author

redge_little@yahoo.com

Institution

Stillman College

Country

USA

ORCID For Submitting Author

0000-0001-8194-6495

Declaration of Conflict of Interest

The authors have no conflict of interest

Exports

Logo branding

Exports