Buckling of Two-Dimensional Covalent Organic Frameworks Under Thermal Stress

14 March 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Two-dimensional Covalent organic frameworks (2D COFs) are periodic, permanently porous, and lightweight solids that are polymerized from topologically designed monomers. The predictable design and structural modularity of these materials make them promising candidates for applications including catalysis, environmental remediation, chemical separations, and organic electronics, many of which will require stability to mechanical and thermal stress. Based on their reinforced structures and high degradation temperatures as determined by thermal gravimetric analysis (TGA), many reports have claimed that COFs have excellent thermal stability. However, their stability to heat and pressure has not been probed using methods that report on structural changes rather than the loss of volatile compounds. Here we explore two structurally analogous 2D COFs with different polymerization chemistries using in operando X-ray diffraction, which demonstrates the loss of crystallinity at lower temperatures than the degradation temperatures measured by TGA. Density functional theory calculations suggest that an asymmetric buckling of the COF lattice is responsible for the observed loss of crystallinity. In addition to their thermal stability, x-ray diffraction of the 2D COFs under gas pressures up to 100 bar showed no loss in crystallinity or structural changes, indicating that these materials are robust to mechanical stress by applied pressure. We expect that these results will encourage further exploration of COF stability as a function of framework design and isolated form, which will guide the design of frameworks that withstand demanding application-relevant conditions.

Keywords

Covalent Organic Frameworks
Thermal Contraction
Phase Transition
Thermal Stability
Density Functional Theory
Variable-Temperature X-ray Durection

Supplementary materials

Title
Description
Actions
Title
COFThermalStability SI ChemRxiv
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.