Automated Detection and Characterization of Surface Restructuring Events in Bimetallic Catalysts

11 April 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Surface restructuring in bimetallic systems has recently been shown to play a crucial role in heterogeneous catalysis. In particular, the segregation in binary alloys can be reversed in the presence of strongly bound adsorbates. Mechanistic characterization of such restructuring phenomena at the atomic level remains scarce and challenging due to the large configurational space that must be explored. To this end, we propose an automated method to discover elementary surface restructuring processes in an unbiased fashion, using Pd/Ag as an example. We employ high-temperature classical molecular dynamics (MD) to rapidly detect restructuring events, isolate them, and optimize using density functional theory (DFT). In addition to confirming the known exchange descent mechanism, our systematic approach has revealed three new predominant classes of events at step edges of close-packed surfaces that have not been considered before: (1) vacancy insertion; (2) direct exchange; (3) interlayer exchange. The discovered events enable us to construct the complete set of mechanistic pathways by which Pd is incorporated into the Ag host in vacuum. These atomistic insights provide a step toward systematic understanding and engineering of surface segregation dynamics in bimetallic catalysts.

Keywords

Bimetallic Catalysts
Single-Atom Alloys
Surface Restructuring
surface segregation
Reverse segregation
Molecular dynamics
Density functional theory
Transition state modeling

Supplementary materials

Title
Description
Actions
Title
PdAg ESI 040519
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.