Assessing Many-Body Effects of Water Self-Ions. II: H3O+(H2O)n Clusters

03 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The importance of many-body effects in the hydration of the hydronium ion (H3O+) is investigated through a systematic analysis of the many-body expansion of the interaction energy carried out at the coupled cluster level of theory for the low-lying isomers of H3O+(H2O)n clusters with n = 1 − 5. This is accomplished by partitioning individual fragments extracted from the whole clusters into “groups” that are classified by both the number of H3O+ and water molecules and the H-bonding connectivity within a given fragment. Effects due to the presence of the Zundel ion, (H5O2)+, are analyzed by further partitioning fragment groups by the “context” of their parent clusters. With the aid of the absolutely localized molecular orbital energy decomposition analysis (ALMO EDA), this structure-based partitioning is found to largely correlate with the character of different many-body interactions, such as cooperative and anticooperative hydrogen-bonding, within each fragment. This analysis emphasizes the importance of a many-body representation of inductive electrostatics and charge transfer in modeling the hydration of an excess proton in water. The comparison between the reference coupled cluster many-body interaction terms with the corresponding values obtained with various exchange-correlation functionals demonstrates that many of these functionals yield an unbalanced treatment of the H3O+(H2O)n configuration space.

Keywords

protonated water
density functional theory
Grotthuss mechanism
delocalization error

Supplementary materials

Title
Description
Actions
Title
protonated water si
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.