Aroma Molecules as Dynamic Volatile Surfactants: Functionality Beyond the Scent

27 August 2019, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Understanding of non-equilibrium processes at dynamic interfaces is indispensable for advancing design and fabrication of solid state and soft materials.
The research presented here unveils specific interfacial behavior of aroma molecules and justifies their usage as multifunctional volatile surfactants. As non-conventional volatile amphiphiles we study commercially available poorly water-soluble compounds from the classes of synthetic and essential flavor oils. Their distinctive feature is high dynamic interfacial activity, so that they decrease the surface tension of aqueous solutions on a time scale of milliseconds. Another potentially useful property of such amphiphiles is their volatility, so that they notably evaporate from interfaces on a time scale of seconds. This behavior allows for control of wetting and spreading processes. A revealed synergetic interfacial behavior of mixtures of conventional and volatile surfactants is attributed to a decrease of the adsorption barrier as a result of high statistical availability of new sites at the surface upon evaporation of the volatile component. Our results offer promising advantages in manufacturing technologies which involve newly creating interfaces, such as spraying, coating technologies, ink-jet printing, microfluidics, laundry, stabilization of emulsions in cosmetic and food industry, as well as in geosciences for controlling aerosols formation.

Keywords

dynamic tensiometry
volatile surfactants
ink-jet printing
essential oils
Dynamic Interfaces

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.