An Electrochemical Investigation of Interfacial Electron Uptake by the Sulfur Oxidizing Bacterium Thioclava electrotropha ElOx9

22 May 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Extracellular electron transfer (EET) allows microbes to acquire energy from solid state electron acceptors and donors, such as environmental minerals. This process can also be harnessed at electrode interfaces in bioelectrochemical technologies including microbial fuel cells, microbial electrosynthesis, bioremediation, and wastewater treatment. Improving the performance of these technologies will benefit from a better fundamental understanding of EET in diverse microbial systems. While the mechanisms of outward (i.e. microbe-to-anode) EET is relatively well characterized, specifically in a few metal-reducing bacteria, the reverse process of inward EET from redox-active minerals or cathodes to bacteria remains poorly understood. This knowledge gap stems, at least partly, from the lack of well-established model organisms and general difficulties associated with laboratory studies in existing model systems. Recently, a sulfur oxidizing marine microbe, Thioclava electrotropha ElOx9, was demonstrated to perform electron uptake from cathodes. However, a detailed analysis of the electron uptake pathways has yet to be established, and electrochemical characterization has been limited to aerobic conditions. Here, we report a detailed amperometric and voltammetric characterization of ElOx9 cells coupling cathodic electron uptake to reduction of nitrate as the sole electron acceptor. We demonstrate that this inward EET by ElOx9 is facilitated by a direct-contact mechanism through a redox center with a formal potential of -94 mV vs SHE, rather than soluble intermediate electron carriers. In addition to the implications for understanding microbial sulfur oxidation in marine environments, this study highlights the potential for ElOx9 to serve as a convenient and readily culturable model organism for understanding the molecular mechanisms of inward EET.

Keywords

electromicrobiology
extracellular electron transfer
lithotrophy
biocathodes

Supplementary materials

Title
Description
Actions
Title
Karbelkar 2019 Supplemetary Data
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.