An Amphiphilic Polymer-Supported Strategy Enables Chemical Transformations Under Anhydrous Conditions for DNA-Encoded Library Synthesis

Herein, we describe the development of a practical catch-and release methodology utilizing a cationic, amphiphilic PEG-based polymer to perform chemical transformations on immobilized DNA conjugates under anhydrous conditions. We demonstrate the usefulness of our ATAC (<u>a</u>mphiphilic polymers for <u>t</u>ransformations under <u>a</u>nhydrous <u>c</u>onditions) approach by performing several challenging transformations on DNA-conjugated small molecules in pure organic solvents: the addition of a carbanion equivalent to a DNA-conjugated ketone in tetrahydrofuran, the synthesis of saturated heterocycles using the tin (Sn) amine protocol (SnAP) in dichloromethane and the dual-catalytic (Ir/Ni) metallaphotoredox decarboxylative cross-coupling of carboxylic acids to DNA-conjugated aryl halides in DMSO. In addition, we demonstrate the feasibility of the latter in multititer-plate format.