Activation of Ethylene C-H Bonds on Uniform D8 Ir(I) and Ni(II) Cations in Zeolites: Catalytic Butadiene and Butenes Production Under Mild Conditions

The homolytic activation of the strong C-H bonds in ethylene is demonstrated, for the first time, on d8 Ir(I) and Ni(II) single atoms in the cationic positions of zeolites H-FAU and H-BEA under ambient conditions. The oxidative addition of C2H4 to the metal center occurs with the formation of a Ir(III) and Ni(IV) vynil hydride, explaining the initiation of the Cossee-Arlman cycle on d8 M(I/II) sites in the absence of pre-existing M-H bonds. Under mild reaction conditions (80-220ᵒC, 1 bar), the catalytic dimerization to butenes and the unprecedented dehydrogenative coupling of ethylene to butadiene occurs over these catalysts. Butene-1 is not converted to butadiene under the reaction conditions applied. Post-reaction characterization of the two materials reveals that the active metal cations remain site-isolated whereas deactivation occurs due to the formation of carbonaceous deposits on the zeolites. Our findings have significant implications for the molecular level understanding of ethylene conversion and the development of new ways to functionalize C-H bonds under mild conditions.