A Structure-Based Platform for Predicting Chemical Reactivity

21 October 2019, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Despite their enormous potential, machine learning methods have only found limited application in predicting reaction outcomes, as current models are often highly complex and, most importantly, are not transferrable to different problem sets. Herein, we present the direct utilization of Lewis structures in a machine learning platform for diverse applications in organic chemistry. Therefore, an input based on multiple fingerprint features (MFF) as a universal molecular representation was developed and used for problem sets of increasing complexity: First, molecular properties across a diverse array of molecules could be predicted accurately. Next, reaction outcomes such as stereoselectivities and yields were predicted for experimental data sets that were previously evaluated using (complex) problem-oriented descriptor models. As a final application, a systematic high-throughput data set showed good correlation when using the MFF model, which suggests that this approach is general and ready for immediate adoption by chemists.

Keywords

reactivity prediction
machine learning
molecular structure
Organic synthesis problems

Supplementary materials

Title
Description
Actions
Title
toc
Description
Actions
Title
Supporting Information
Description
Actions
Title
MFF Tool
Description
Actions
Title
MFF Tool Example
Description
Actions
Title
Input Data All
Description
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.