A Reliable and Accurate Solution to the Induced Fit Docking Problem for Protein-Ligand Binding

We present a reliable and accurate solution to the induced fit docking problem for protein-ligand binding by combining ligand-based pharmacophore docking (Phase), rigid receptor docking (Glide), and protein structure prediction (Prime) with explicit solvent molecular dynamics simulations. We provide an in-depth description of our novel methodology and present results for 41 targets consisting of 415 cross-docking cases divided amongst a training and test set. For both the training and test-set, we compute binding modes with a ligand-heavy atom RMSD to within 2.5 Å or better in over 90% of cross-docking cases compared to less than 70% of cross-docking cases using our previously published induced-fit docking algorithm and less than 41% using rigid receptor docking. Applications of the predicted ligand-receptor structure in free energy perturbation calculations is demonstrated for both public data and in active drug discovery projects, both retrospectively and prospectively.