ChemRxiv
These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.
1/1
2 files
0/0

A Comonomer Strategy for Triggered Degradation and Re/Upcycling of High-Performance Thermoset Plastics

preprint
submitted on 05.12.2019 and posted on 13.12.2019 by Peyton Shieh, Wenxu Zhang, Keith Husted, Samantha Kristufek, Boya Xiong, David Lundberg, Jet Lem, David Veysset, Yuchen Sun, Keith Nelson, Desiree Plata, Jeremiah Johnson
Thermosets play a key role in the modern plastics and rubber industries, comprising ~18% of polymeric materials with a worldwide annual production of 65 million tons. The high density of crosslinks that give these materials their useful properties comes at the expense of facile degradability and re/upcyclability. Here, using the high-performance industrial thermoset plastic poly-dicyclopentadiene (pDCPD) as a model system, we show that when a small number of cleavable bonds are selectively installed within the strands of thermoset plastics using a low-cost comonomer approach, the resulting materials display the same exceptional properties as the native material yet they can undergo triggered degradation to yield soluble, re/upcyclable products of controlled size and functionality. In contrast, installation of cleavable crosslinks, even at comparably high loadings, does not produce degradable materials. These findings shed new light on the topology of polymer networks, revealing cleavable bond location as a universal design principle for controlled thermoset degradation and re/upcycling.

History

Email Address of Submitting Author

jaj2109@mit.edu

Institution

Massachusetts Institute of Technology

Country

United States

ORCID For Submitting Author

0000-0001-9157-6491

Declaration of Conflict of Interest

P.S., W.Z., K.E.L.H., and J.A.J. are named inventors on patent applications filed by the Massachusetts Institute of Technology on the copolymers described in this work.

Exports

Logo branding

Categories

Exports