These are preliminary reports that have not been peer-reviewed. They should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information. For more information, please see our FAQs.

A Bayesian Framework for Adsorption Energy Prediction on Bimetallic Alloy Catalysts

submitted on 13.11.2019 and posted on 25.11.2019 by Osman Mamun, Kirsten Winther, Jacob Boes, Thomas Bligaard
For high-throughput screening of materials for heterogeneous catalysis, scaling relations provides an efficient scheme to estimate the chemisorption energies of hydrogenated species. However, conditioning on a single descriptor ignores the model uncertainty and leads to sub optimal prediction of the chemisorption energy. In this paper, we extend the single descriptor linear scaling relation to a multi descriptor linear regression models to leverage the correlation between adsorption energy of any two pair of adsorbates. With a large dataset, we use Bayesian Information Criteria (BIC) as the model evidence to select the best linear regression model that are derived from non-informative priors. Furthermore, Gaussian Process Regression (GPR) based on the meaningful convolution of physical properties of the metal-adsorbate complex can be used to predict the baseline residual of the selected model. This integrated Bayesian model selection and Gaussian process regression, dubbed as residual learning, can achieve performance comparable to standard DFT error (0.1 eV) for most adsorbate system. For sparse and small datasets, we propose an ad hoc Bayesian Model Averaging (BMA) approach to make a robust prediction. With this Bayesian framework, we significantly reduce the model uncertainty and improve the prediction accuracy. The possibilities of the framework for high-throughput catalytic materials exploration in a realistic setting is illustrated using large and small sets of both dense and sparse simulated dataset generated from a public database of bimetallic alloys available in


Email Address of Submitting Author


Stanford University


United States of America

ORCID For Submitting Author


Declaration of Conflict of Interest

No competing financial interest