Improved Band Gaps and Structural Properties from Wannier-Fermi-Lowdin Self-Interaction Corrections for Periodic Systems

15 October 2020, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The accurate prediction of band gaps and structural properties in periodic systems continues to be one of the central goals of electronic structure theory. However, band gaps obtained from popular exchange-correlation functionals (such as LDA and PBE) are severely underestimated partly due to the spurious self-interaction error (SIE) inherent to these functionals. In this work, we present a new formulation and implementation of Wannier function-derived Fermi-Lowdin (WFL) orbitals for correcting the SIE in periodic systems. Since our approach utilizes a variational minimization of the self-interaction energy with respect to the Wannier charge centers, it is computationally more efficient than the HSE hybrid functional and other self-interaction corrections that require a large number of transformation matrix elements. Calculations on several (17 in total) prototypical molecular solids, semiconductors, and wide-bandgap materials show that our WFL self-interaction correction approach gives better band gaps and bulk moduli compared to semilocal functionals, largely due to the partial removal of self-interaction errors.

Keywords

density functional theory
band gap
self-interaction correction
periodic systems
Electronic Properties
Wannier functions
structural properties

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.